SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road - 517583 **QUESTION BANK (DESCRIPTIVE)**

UNIT-I **BOOLEAN ALGEBRA AND LOGIC GATES**

Subject with Code: Switching Theory and Logic Design (20EC0403)

Course & Branch: B.Tech& ECE

Year &Sem: II-B.Tech& I-Sem

Regulation: R20

	BOOLEAN ALGEBRA AND LOGIC GATES		
1.	State and prove any 4 Boolean theorems with examples.	[L3][CO1]	[12M]
2.	State and prove the following Boolean laws:(i).Commutative(ii).Associative(iii).Distributive	[L3][CO1]	[12M]
	a) State and Prove Demorgan's Theorem using suitable example.	[L3][CO1]	[6M]
3.	b)Simplify to a sum of 3 terms: A'C'D' +AC' +BCD + A'CD' + A'BC + AB'C'	[L4][CO2]	[6M]
4.	Simplify the following Boolean expressions. i.A'C'+ABC +AC' to three literals ii.(X'Y' + Z)' + Z + XY + WZ to three literals. iii.A'B(D' + C'D) + B(A + A'CD) to one literal. iv.(A'+C)(A'+C')(A + B+C'D)to four literals.	[L4][CO2]	[12M]
5.	a)Simplify the following Boolean functions to minimum number of literals: i.($a + b$)'($a' + b'$)' ii.y($wz' + wz$) + xy	[L4][CO2]	[6M]
	b)State and prove Boolean laws related to OR, AND, NOT gates.	[L3][CO1]	[6M]
6.	Identify the Dual of the following Boolean expressions (i) AB'C+AB'D+A'B' (ii) A'B'C+ABC'+A'B'C'D	[L2][CO2]	[12M]
7.	Express the complement of the following Boolean expressions. $i.B'C'D + (B + C + D)' + B'C'D'E$ $ii.AB + (AC)' + (AB + C)$ $iii.A'B'C' + A'BC' + AB'C' + ABC'$ $iv.AB + (AC)' + AB'C$	[L2][CO2]	[12M]
8.	 a) Express the following functions in sum of Minterms and product of Maxterms. i.F (A,B,C,D) = B'D + A'D + BD ii.F(x,y,z) = (xy + z)(xz+y) 	[L2][CO2]	[6M]
	b).Express the following Boolean functions in to Canonical form: i. F=AB+BC+CA ii. F=XY+Z+YZ+XYZ	[L2][C01]	[6M]
	For the given Boolean function F=XY'Z + X'Y'Z +W'XY + WX'Y + WXY		
9.	a) Simplify the function to minimal literals using Boolean algebra	[L4][CO2]	[6M]
	b). Draw the logic diagram for the simplified expression of the above using AOI.	[L1][CO2]	[6M]
10	Describe about the digital logic gates	[L1][CO1]	[12M]

	a) List the steps involved in simplification of K map.	[L1][CO1]	[4M]
1.	b) Simplify the following expression using the K-map for the 3-variable and	[L4][CO3]	[8M]
	draw the logic diagram using AOI. $Y = AB'C+A'BC+A'B'C+A'B'C'+AB'C'$		
	a)Simplify the Boolean expression using K-map and draw the logic diagram	[L4][CO2]	[6M]
2.	using AOI. F=A'+AB+ABD'+AB'D'+C'		
۷.	b)Simplify the Boolean function using 5 variable K-map.	[L4][CO2]	[6M]
	$F=\sum m(0, 1, 2, 4, 7, 8, 12, 14, 15, 16, 17, 18, 20, 24, 28, 30, 31)$		
3.	Apply the K-Map technique to simplify the Boolean expression in POS and SOP	[L4][CO2]	[12M]
5.	form using K-map $F(A,B,C,D) = \Sigma(1,2,4,5,9,12,13,14)$		
	a) Simplify the following Boolean function for minimal POS form using K-map	[L4][CO2]	[6M]
4.	F(X,Y,Z) = X'YZ + XY'Z' + XYZ + XYZ'		
	b) Simplify the Boolean function Using K-Map	[L4][CO3]	[6M]
	$F(A,B,C,D) = \sum (1,3,7,11,15) + d(0,2,5)$		
	a) Simplify using K-map and express the reduced expression in SOP and POS	[L4][CO2]	[6M]
5.	form. $F = \Sigma m (0, 6, 8, 13, 14) + \Sigma d (2, 4, 10)$		
5.	b) Implement the following Boolean function using NAND and NOR gates.	[L4][CO3]	[6M]
	Y = (AB' + A'B)(C+D').		
6.	Simplify the following expressions using K-Map and realize with NAND and	[L4][CO3]	[12M]
0.	NOR gates. $F = \pi M (1, 2, 3, 8, 9, 10, 11, 14)$. $\pi d (7, 15)$		
7	Simplify the following expressions using K-Map and realize with NAND and	[L4][CO3]	[12M]
7.	NOR gates. F = $\sum m (0,2,5,9,15) + \sum d(6,7,8,10,12,13)$		
6	Apply the K-Map technique to simplify the Boolean expression and realize with	[L3][CO3]	[12M]
8.	NAND and NOR gates. $F = AB'C + A'B'C + A'BC + AB'C' + A'B'C'$.	[20][000]	[]
	Deduce the following Boolean expressions using K-map and implement them	[L4][CO3]	[6M]
9.	using NAND and NOR gates:	L][]	L- J
	(i) $F(W, X, Y, Z) = W'X'YZ' + W'XYZ' + WX'YZ' +$		
	WX'YZ+WXYZ'+WXYZ		
	b) Explain the structure of Ex-OR gate by K-Map using 4 Variable.	[L2][CO2]	[6M]
10.	Simplify the following Boolean function using Tabulation method, realize with	[L4][CO2]	[12M]
	NAND gates and NOR gates. $Y(A, B,C,D) = \Sigma(1,3,5,8,9,11,15)$		L1
1		1	1

UNIT –III COMBINATIONAL LOGIC

1	a) Define Combinational Circuit, explain the analysis procedure of a combinational logic circuit using suitable example.	[L2][C01]	[6M]
	b) Design & implement BCD to Excess-3 code converter.	[L3][CO4]	[6M]

2	a) Design & implement a 4-bit Binary-To-Gray code converter.	[L3][CO4]	[6M]
	b) Design a 4 bit binary-to-BCD code converter	[L3][CO4]	[6M]
3	a) Design & implement Full Adder with truth table.	[L3][CO5]	[6M]
	b) Design & implement Full Subtractor with truth table.	[L3][CO5]	[6M]
4	a) Design a 4 bit parallel adder/ Subtractor using full adders	[L3][CO3]	[6M]
	b) Construct a Decimal Adder-circuit.	[L3][CO3]	[6M]
5	Explain Binary Multiplier with an example.	[L2][CO3]	[12M]
6	a) Define Magnitude comparator, Implement a 2-bit Magnitude	[L3][CO3]	[6M]
	comparator and write down its design procedure and applications.		
	b) Design & implement Full Adder using Decoder.	[L3][CO4]	[6M]
7	a)What is Decoder? Explain a 2 to 4 line binary decoder.	[L2][CO5]	[6M]
	b)Draw the circuit for 3:8 decoder and explain	[L2][CO5]	[6M]
8	a)Implement the following Boolean functions using decoder and	[L3][CO4]	[6M]
	ORgates:F1(A,B,C,D)= \sum (2,4,7,9) F2(A,B,C,D)= \sum (10,13,14,15)		
	b) What is encoder? Design octal to binary encoder.	[L3][CO3]	[6M]
9	a) What is multiplexer? Construct 4:1 multiplexer with logic gates and	[L3][CO4]	[6M]
	truth table .		
	b) Implement the following Boolean function using 8:1 multiplexer.	[L3][CO4]	[6M]
	F(A,B,C,D) = A'BD'+ACD+B'CD+A'C'D.		
10	a)What is Demultiplexer? Design 1:8 demultiplexer using two 1:4	[L3][CO4]	[6M]
	demultiplexer.		
	b) Design 32:1 Mux using two 16:1 MUXs and one 2:1 MUX.	[L3][CO4]	[6M]

UNIT –IV SYNCHRONOUS SEQUENTIAL LOGIC

1.	a) What is sequential circuit? Explain with the helpofablockdiagram.	[L2][CO1]	[4M]
	b) Differentiate in between combination and sequential circuits.	[L2][CO1]	[4M]
	c) Differentiate in between synchronous and asynchronous sequential circuits.	[L2][CO1]	[4M]
2.	a) Define Latch? What are the different types of Latches?	[L1][CO1]	[4M]
	b) Define Flip-Flop? What are the different types of Flip-Flops?	[L1][CO1]	[4M]

	c) Explain the working principle of RS Flip-Flop in detail.	[L1][CO2]	[4M]
	a) Explain the working principle of D & T Flip-Flops.	[L2][CO2]	[6M]
3.	b) Explain the working principle of JK Flip-Flop in detail.	[L2][CO2]	[6M]
	a) Derive the characteristic equations for D & T Flip-Flops.	[L3][CO5]	[6M]
4.	b) Convert S-R flip flop into JK-flip flop. Draw and explain the logic diagram.	[L2][CO4]	[6M]
5.	a) Design T Flip Flop by using JK Flip Flop and explain the logic diagram.	[L3][CO5]	[6M]
5.	b) Analyze the clocked sequential circuits.	[L4][CO1]	[6M]
6.	Explain in brief about various types of shift registers	[L2][CO3]	[12M]
7.	Design a 4 bit decade counter	[L4][CO5]	[6M]
8.	a) Define counter and design a 4-bit Ripple counter	[L4][CO5]	[8M]
0.	b) Explain in brief about a 2-bit synchronous up-counter.	[L4][CO5]	[4M]
9.	What is a synchronous counter? Design a 3-bit synchronous up/down counter.	[L4][CO5]	[12M]
10.	Explain about the following counters	[L2][CO5]	[12M]
	a)Ring counter b)Johnson counter		

UNIT –V UNIT-V FINITE STATE MACHINES AND PROGRAMMABLE MEMORIES

1.	a) Define m	[L1][CO1]	[4M]			
	b) Define m	[L1][CO1]	[4M]			
	c) Distingui	ish betwee	en melay & moore machi	nes	[L2][CO1]	[4M]
2	Explain the	[L2][CO1]	[12M]			
۷.	a) State dia	gram	b) State table	c) State assignment		
2	Derive the s	[L3][CO6]	[12M]			
3.		PS	Next State	Output		

			X=0	X=1	X=0	X=1			
		А	a a	b	0	$\frac{\Lambda - 1}{0}$			
		ban	c a	d	0	0			
		c	a	d	0	0			
		d	e	f	0	1			
		e	a	f	0	1			
		f	g	f	0	1			
		g	a	f	0	1			
	Determine		nal state equ	ivalent of the	state table giv	/en.		[L3][CO6]	[12M]
		PS		ext State		tput			
			X=0	X=1	X=0	X=1			
		а	а	b	0	0			
4.		b	С	g	0	1			
4.		с	а	d	0	0			
		d	e	f	0	1			
		e	С	g	0	1			
		f	а	b	0	0			
		g	E	f	0	1			
5.	Explain in brief about Programmable Read Only Memory (PROM) with suitable example.							[L2][CO2]	[12M]
	a) Compare	ROM ar	nd RAM.					[L2][CO1]	[6M]
6.	· •		ypes of RAN	//s				[L2][CO1]	[6M]
			71	ing Boolean fi	inction			[L3][CO5]	[12M]
7.		$l = \Sigma m(0, 0)$		0	$\Sigma m(0, 1, 2, 3, 4, 3)$	5).			[1211]
	Illustrate the PLA for the following Boolean function							[L3][CO5]	[12M]
8.	$F1(A,B,C) = \Sigma m(3,5,7)F2(A,B,C) = \Sigma m(4,5,7).$								
	Illustrate the PAL for the following Boolean function							[L3][CO5]	[12M]
9.	(i) $F(A,B,C,D) = \Sigma m(2,3,8,9,,10,12,13)$								
	$(i)G(A,B,C,D) = \Sigma m(1,3,4,6,9,12,14)$								
	Illustrate the PAL for the following Boolean function						[L3][CO5]	[12M]	
10.	$(i)A(w,x,y,z) = \Sigma m(0,2,6,7,8,9,12,13)$							11 1	L1
10.	$(i)B(w,x,y,z) = \Sigma m(0,2,6,7,8,9,12,13,14)$								